The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X X^3+X^2 X 0 X X^3+X^2 1 1 X 1 1 X X X X^3 X^2 X X X^3 X^2 1 1 1 1 X X X X X X 0 X X^3+X^2 X^2+X 0 X^2+X X^3+X^2 X^3+X X^3 X^3+X^2+X X^2 X^3+X X^3 X^3+X^2+X X^2 X X^2+X X X^3+X X X^2+X X X^3+X X 0 X^3+X^2 0 X^3 X^3+X^2 X^3+X^2 X^3+X^2+X X X X X^3+X^2+X X X X 0 X^3 X^2 X^2 X^3 X^2 0 X^3 X^3+X^2 X^2 0 0 X^3 X^3 X^3 0 0 X^3 X^3 X^3 0 0 0 0 X^3 X^3 0 X^3 X^3 0 X^3 0 0 X^3 0 X^3 X^3 X^3 0 X^3 X^3 0 X^3 0 0 X^3 0 X^3 X^3 0 X^3 0 X^3 X^3 0 0 0 0 generates a code of length 48 over Z2[X]/(X^4) who´s minimum homogenous weight is 48. Homogenous weight enumerator: w(x)=1x^0+250x^48+4x^56+1x^64 The gray image is a linear code over GF(2) with n=384, k=8 and d=192. This code was found by Heurico 1.16 in 0.079 seconds.